Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Диагонали трапеции равны 6 и 8, а средняя линия равна 5. Найдите площадь трапеции.

Вниз   Решение


Известно, что     где  x > 0,  y > 0,  z > 0.  Докажите, что  

ВверхВниз   Решение



Плоскость пересекает ребра AB, AC, DC и DB тетраэдра ABCD в точках M, N, P и Q соответственно, причем AM : MB = m, AN : NC = n, DP : PC = p. Найдите отношение BQ/QD.

ВверхВниз   Решение


Окружность, вписанная в прямоугольный треугольник ABC с гипотенузой AB, касается его сторон BC, CA, AB в точках A1, B1, C1 соответственно. Пусть B1H – высота треугольника A1B1C1. Докажите, что точка H лежит на биссектрисе угла CAB.

ВверхВниз   Решение


Докажите, что среднее арифметическое всех делителей натурального числа n лежит на отрезке  

ВверхВниз   Решение


Длины сторон остроугольного треугольника – последовательные целые числа.
Докажите, что высота, опущенная на среднюю по величине сторону, делит её на отрезки, разность длин которых равна 4.

ВверхВниз   Решение


Дан отрезок AB и прямая MN, пересекающая его. Построить треугольник ABC так, чтобы прямая MN делила его угол пополам.

ВверхВниз   Решение


Имеется 1959 положительных чисел a1, a2..., a1959, сумма которых равна 1. Рассматриваются всевозможные комбинации из 1000 чисел, причём комбинации считаются совпадающими, если они отличаются только порядком чисел. Для каждой комбинации рассматривается произведение входящих в неё чисел. Доказать, что сумма всех этих произведений меньше 1.

ВверхВниз   Решение


Для всех действительных x и y выполняется равенство  f(x² + y) = f(x) + f(y²).  Найдите  f(–1).

ВверхВниз   Решение


Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



Задача 61270

Темы:   [ Уравнения высших степеней (прочее) ]
[ Кубические многочлены ]
[ Деление многочленов с остатком. НОД и НОК многочленов ]
[ Методы решения задач с параметром ]
[ Теорема Безу. Разложение на множители ]
Сложность: 4-
Классы: 9,10,11

Найдите все действительные значения a и b, при которых уравнения  x³ + ax² + 18 = 0,   x³ + bx + 12 = 0  имеют два общих корня, и определите эти корни.

Прислать комментарий     Решение

Задача 61276

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4-
Классы: 9,10,11

Решите уравнения
  а)  x³ – 3x – 1 = 0;
  б)  x³ – 3x = 0.
Укажите в явном виде все корни этих уравнений.

Прислать комментарий     Решение

Задача 61266

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 4
Классы: 10,11

Решите уравнение     Сколько действительных корней оно имеет?

Прислать комментарий     Решение

Задача 61275

 [Метод Виета]
Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

Когда  4p³ + 27q² < 0,  уравнение  x³ + px + q = 0  имеет три действительных корня (неприводимый случай кубического уравнения), но для того, чтобы их найти по формуле Кардано, необходимо использование комплексных чисел. Однако можно указать все три корня в явном виде через тригонометрические функции.
  а) Докажите, что при  p < 0  уравнение  x³ + px + q = 0  заменой  x = kt  сводится к уравнению  4t³ – 3t – r = 0   (*)  от переменной t.
  б) Докажите, что при  4p³ + 27q² ≤ 0  решениями уравнения (*) будут числа  t1 = cos,   t2 = cos,   t3 = cos,  где  φ = arccos r.

Прислать комментарий     Решение

Задача 61279

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

а) Докажите, что при  4p³ + 27q² < 0  уравнение  x³ + px + q = 0  заменой  x = αy + β  сводится к уравнению ay³ – 3by² – 3ay + b = 0    (*)
от переменной y.

б) Докажите, что решениями уравнения (*) будут числа   y1 = tg ,   y2 = tg ,   y3 = tg ,   где φ определяется из условий:
sin φ = ,   cos φ = .

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .