|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx. Докажите, что каждая сторона четырёхугольника меньше суммы трех других его сторон.
Пусть AA1 и BB1 — медианы треугольника ABC. Докажите,
что
AA1 + BB1 >
Количество перестановок множества из n элементов обозначается Pn. Докажите равенство Pn = n!. Найдите объём правильной шестиугольной пирамиды с боковым ребром b и радиусом R описанной сферы. Докажите формулы:
arcsin(- x) = - arcsin x, arccos(- x) =
На плоскости даны точки O, M и прямая l, проходящая через
точку O. Прямую l повернули вокруг точки O против часовой стрелки
на угол
Дан многочлен с целыми коэффициентами. Если в него вместо неизвестного подставить 2 или 3, то получаются числа, кратные 6. Докажите неравенство для положительных значений переменных: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43]
Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²).
Докажите неравенство для положительных значений переменных:
Докажите неравенство для положительных значений переменных:
При каких значениях a и b выражение p = 2a² − 8ab + 17b² − 16a − 4b + 2044 принимает наименьшее значение? Чему равно это значение?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 43] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|