Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Даны рациональные положительные p, q, причём  1/p + 1/q = 1.  Докажите, что для положительных a и b выполняется неравенство   ab ≤ ap/p + bq/q.

Вниз   Решение


Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

ВверхВниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

ВверхВниз   Решение


Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2 из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ = 1 выполняется неравенство:

f$\displaystyle \left(\vphantom{\alpha_1x_1+\alpha_2x_2}\right.$$\displaystyle \alpha_{1}^{}$x1 + $\displaystyle \alpha_{2}^{}$x2$\displaystyle \left.\vphantom{\alpha_1x_1+\alpha_2x_2}\right)$ > $\displaystyle \alpha_{1}^{}$f (x1) + $\displaystyle \alpha_{2}^{}$f (x2).


ВверхВниз   Решение


Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Как разделить семь яблок между 12 мальчиками, если ни одно яблоко нельзя резать более чем на пять частей?

ВверхВниз   Решение


Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить?

ВверхВниз   Решение


Докажите, что для любых x1,..., xn $ \in$ [0; $ \pi$] справедливо неравенство:

sin$\displaystyle \left(\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right.$$\displaystyle {\dfrac{x_1+\ldots+x_n}{n}}$$\displaystyle \left.\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right)$ $\displaystyle \geqslant$ $\displaystyle {\dfrac{\sin
x_1+\ldots+ \sin x_n}{n}}$.


Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 16]      



Задача 61406

Тема:   [ Выпуклость и вогнутость ]
Сложность: 3
Классы: 10,11

Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2 из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ = 1 выполняется неравенство:

f$\displaystyle \left(\vphantom{\alpha_1x_1+\alpha_2x_2}\right.$$\displaystyle \alpha_{1}^{}$x1 + $\displaystyle \alpha_{2}^{}$x2$\displaystyle \left.\vphantom{\alpha_1x_1+\alpha_2x_2}\right)$ > $\displaystyle \alpha_{1}^{}$f (x1) + $\displaystyle \alpha_{2}^{}$f (x2).


Прислать комментарий     Решение

Задача 61407

Тема:   [ Выпуклость и вогнутость ]
Сложность: 3+
Классы: 10,11

Неравенство Иенсена. Докажите, что если функция f (x) выпукла вверх на отрезке [a;b], то для любых различных точек x1, x2, ..., xn ( n $ \geqslant$ 2) из [a;b] и любых положительных $ \alpha_{1}^{}$, $ \alpha_{2}^{}$, ..., $ \alpha_{n}^{}$ таких, что $ \alpha_{1}^{}$ + $ \alpha_{2}^{}$ +...+ $ \alpha_{n}^{}$ = 1, выполняется неравенство:

f ($\displaystyle \alpha_{1}^{}$x1 +...+ $\displaystyle \alpha_{n}^{}$xn) > $\displaystyle \alpha_{1}^{}$f (x1) +...+ $\displaystyle \alpha_{n}^{}$f (xn).


Прислать комментарий     Решение

Задача 115512

Темы:   [ Выпуклость и вогнутость (прочее) ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 10,11

Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы
     y = xn + px + q,  z = yn + py + q,  x = zn + pz + q,
то выполнено неравенство  x²y + y²z + z²x ≥ x²z + y²x + z²y.
Рассмотрите случаи   а)  n = 2;   б)  n = 2010.

Прислать комментарий     Решение

Задача 61408

Темы:   [ Тригонометрические неравенства ]
[ Выпуклость и вогнутость ]
Сложность: 3+
Классы: 10,11

Докажите, что для любых x1,..., xn $ \in$ [0; $ \pi$] справедливо неравенство:

sin$\displaystyle \left(\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right.$$\displaystyle {\dfrac{x_1+\ldots+x_n}{n}}$$\displaystyle \left.\vphantom{\dfrac{x_1+\ldots+x_n}{n}}\right)$ $\displaystyle \geqslant$ $\displaystyle {\dfrac{\sin
x_1+\ldots+ \sin x_n}{n}}$.


Прислать комментарий     Решение

Задача 61392

 [Неравенство Юнга]
Темы:   [ Классические неравенства (прочее) ]
[ Неравенство Иенсена ]
Сложность: 4+
Классы: 9,10,11

Даны рациональные положительные p, q, причём  1/p + 1/q = 1.  Докажите, что для положительных a и b выполняется неравенство   ab ≤ ap/p + bq/q.

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .