ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных. Можно ли расставить по кругу семь целых неотрицательных чисел так, чтобы сумма каких-то трёх расположенных подряд чисел была равна 1, каких-то трёх подряд расположенных – 2, ... , каких-то трёх подряд расположенных – 7? Докажите, что a²pq + b²qr + c²rp ≤ 0, если a, b, c – стороны треугольника; а p, q, r – любые числа, удовлетворяющие условию p + q + r = 0. Докажите, что для любого многочлена P(x) степени m существует единственный многочлен Q(x) степени m + 1 , для которого ΔQ(x) = P(x) и Q(0) = 0. |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 138]
Многочлен P(x) при всех действительных x принимает только
положительные значения.
Докажите, что для любого многочлена P(x) степени m существует единственный многочлен Q(x) степени m + 1 , для которого ΔQ(x) = P(x) и Q(0) = 0.
а) Докажите, что б) Докажите, что если p и q – различные числа и p + q = 1, то
Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с
положительными разностями d1, d2, d3, ... . Может ли случиться, что при этом сумма
1/d1 + 1/d2 + ... + 1/dk не превышает 0,9? Рассмотрите случаи:
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 138]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке