ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости нарисован квадрат, стороны которого горизонтальны и вертикальны. В нём проведены несколько отрезков, параллельных сторонам, причём никакие два отрезка не лежат на одной прямой и не пересекаются по точке, внутренней для обоих отрезков. Оказалось, что отрезки разбили квадрат на прямоугольники, причём каждая вертикальная прямая, пересекающая квадрат и не содержащая отрезков разбиения, пересекает ровно k прямоугольников разбиения, а каждая горизонтальная прямая, пересекающая квадрат и не содержащая отрезков разбиения – ровно l прямоугольников. Каким могло оказаться количество прямоугольников разбиения? Решение |
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 199]
В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?
Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
На плоскости нарисован квадрат, стороны которого горизонтальны и вертикальны. В нём проведены несколько отрезков, параллельных сторонам, причём никакие два отрезка не лежат на одной прямой и не пересекаются по точке, внутренней для обоих отрезков. Оказалось, что отрезки разбили квадрат на прямоугольники, причём каждая вертикальная прямая, пересекающая квадрат и не содержащая отрезков разбиения, пересекает ровно k прямоугольников разбиения, а каждая горизонтальная прямая, пересекающая квадрат и не содержащая отрезков разбиения – ровно l прямоугольников. Каким могло оказаться количество прямоугольников разбиения?
Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Внутри квадрата отметили несколько точек и соединили их отрезками между собой и с вершинами квадрата так, чтобы отрезки не пересекались друг с другом (нигде кроме концов). В результате квадрат разделился на треугольники, так что все отмеченные точки оказались в вершинах треугольников, и ни одна не попала на стороны треугольников. Для каждой отмеченной точки и для каждой вершины квадрата подсчитали число проведённых из неё отрезков. Могло ли так случиться, что все эти числа оказались чётными?
Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|