ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Шмаров В.

Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



Задача 108837

Темы:   [ Медиана пирамиды (тетраэдра) ]
[ Медиана пирамиды (тетраэдра) ]
Сложность: 3
Классы: 8,9

Даны три вектора , и . Докажите, что вектор перпендикулярен вектору (· ) - (· ) .
Прислать комментарий     Решение


Задача 109104

Темы:   [ Правильный тетраэдр ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 3
Классы: 10,11

Все попарные расстояния между четырьмя точками в пространстве равны 1. Найдите расстояние от одной из этих точек до плоскости, определяемой тремя другими.
Прислать комментарий     Решение


Задача 64360

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Элементы пирамиды (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Проектирование помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Автор: Шмаров В.

Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.

Прислать комментарий     Решение

Задача 86970

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Боковые грани треугольной пирамиды образуют равные углы с плоскостью основания. Докажите, что высота пирамиды проходит либо через центр окружности, вписанной в треугольник основания, либо через центр одной из вневписанных окружностей этого треугольника.

Прислать комментарий     Решение


Задача 86971

Темы:   [ Теорема о трех перпендикулярах ]
[ Высота пирамиды (тетраэдра) ]
Сложность: 4-
Классы: 10,11


Каждая из боковых граней треугольной пирамиды образует с плоскостью основания угол в 60o. Стороны основания равны 10, 10, 12. Найдите объем пирамиды.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 37]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .