ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны. Решение |
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 603]
Окружность с центром в точке пересечения диагоналей AC и BC равнобедренной трапеции ABCD касается меньшего основания BC и боковой стороны AB. Найдите площадь трапеции ABCD, если известно, что её высота равна 16, а радиус окружности равен 3.
В треугольнике АВС из вершин А и В проведены биссектрисы, а из вершины С – медиана. Оказалось, что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник. Найдите углы треугольника АВС.
В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.
В треугольнике АВС угол В равен 120°, АВ = 2ВС. Серединный перпендикуляр к стороне АВ пересекает АС в точке D. Найдите отношение AD : DC.
В трапеции с перпендикулярными диагоналями высота равна средней линии. Докажите, что трапеция равнобокая.
Страница: << 101 102 103 104 105 106 107 >> [Всего задач: 603] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|