ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи С начала учебного года Андрей записывал свои оценки по математике. Получая очередную оценку (2, 3, 4 или 5), он называл её неожиданной, если до этого момента она встречалась реже каждой из всех остальных возможных оценок. (Например, если бы он получил с начала года подряд оценки 3, 4, 2, 5, 5, 5, 2, 3, 4, 3, то неожиданными были бы первая пятерка и вторая четвёрка.) За весь учебный год Андрей получил 40 оценок – по 10 пятерок, четвёрок, троек и двоек (неизвестно, в каком порядке). Можно ли точно сказать, сколько оценок были для него неожиданными? Решение |
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 488]
Есть 100 красных, 100 жёлтых и 100 зелёных палочек. Известно, что из любых трёх палочек трёх разных цветов можно составить треугольник.
Есть тридцать карточек, на каждой написано по числу: на десяти карточках – a, на десяти других – b, и на десяти оставшихся – c (числа a, b, c все разные). Известно, что к любым пяти карточкам можно подобрать еще пять так, что сумма чисел на этих десяти карточках будет равна нулю. Докажите, что одно из чисел a, b, c равно нулю.
С начала учебного года Андрей записывал свои оценки по математике. Получая очередную оценку (2, 3, 4 или 5), он называл её неожиданной, если до этого момента она встречалась реже каждой из всех остальных возможных оценок. (Например, если бы он получил с начала года подряд оценки 3, 4, 2, 5, 5, 5, 2, 3, 4, 3, то неожиданными были бы первая пятерка и вторая четвёрка.) За весь учебный год Андрей получил 40 оценок – по 10 пятерок, четвёрок, троек и двоек (неизвестно, в каком порядке). Можно ли точно сказать, сколько оценок были для него неожиданными?
Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны.
На каждой из четырёх карточек написано натуральное число. Берут наугад две карточки и складывают числа на них. С равной вероятностью эта сумма может быть меньше 9, равна 9 и больше 9. Какие числа могут быть записаны на карточках?
Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 488] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|