ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Ссылки по теме:
Статья Н. Виленкина "Комбинаторика"

Материалы по этой теме:


Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 501]      



Задача 111804

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Индукция (прочее) ]
[ Принцип крайнего (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

В очереди к стоматологу стоят 30 ребят: мальчиков и девочек. Часы на стене показывают 8:00. Как только начинается новая минута, каждый мальчик, за которым стоит девочка, пропускает её вперед. Докажите, что перестановки в очереди закончатся до 8:30, когда откроется дверь кабинета.

Прислать комментарий     Решение

Задача 61510

Темы:   [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10,11

На доске написано n натуральных чисел. Пусть ak – количество тех из них, которые больше k. Исходные числа стерли и вместо них написали все положительные ak. Докажите, что если с новыми числами сделать то же самое, то на доске окажется исходный набор чисел.
Например, для чисел 5, 3, 3, 2, получается следующая цепочка   (5, 3, 3, 2)  →  (4, 4, 3, 1, 1)  →  (5, 3, 3, 2).

Прислать комментарий     Решение

Задача 64628

Темы:   [ Классическая комбинаторика (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
[ Оценка + пример ]
Сложность: 4-
Классы: 9,10,11

В языке племени АУ две буквы – "a" и "y". Некоторые последовательности этих букв являются словами, причём в каждом слове не меньше одной и не больше 13 букв. Известно, что если написать подряд любые два слова, то полученная последовательность букв не будет словом. Найдите максимальное возможное количество слов в таком языке.

Прислать комментарий     Решение

Задача 64849

Темы:   [ Перестановки и подстановки (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10

На кольцевой дороге через равные промежутки расположены 25 постов, на каждом стоит полицейский. Полицейские пронумерованы в каком-то порядке числами от 1 до 25. Требуется, чтобы они перешли по дороге так, чтобы снова на каждом посту был полицейский, но по часовой стрелке за номером 1 стоял номер 2, за номером 2 стоял номер 3, ..., за номером 25 стоял номер 1. Докажите, что если организовать переход так, чтобы суммарное пройденное расстояние было наименьшим, то кто-то из полицейских останется на своём посту.

Прислать комментарий     Решение

Задача 65080

Темы:   [ Перестановки и подстановки (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Храмцов Д.

На полке в произвольном порядке стоят десять томов энциклопедии, пронумерованных от 1 до 10. Разрешается менять местами любые два тома, между которыми стоит не меньше четырёх других томов. Всегда ли можно расставить все тома по возрастанию номеров?

Прислать комментарий     Решение

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .