ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некотором государстве ценятся золотой и платиновый песок. Золото можно менять на платину, а платину на золото по курсу, который определяется натуральными числами g и p так: x граммов золотого песка равноценны y граммам платинового, если xp = yg (числа x и y могут быть нецелыми). Сейчас у банкира есть по килограмму золотого и платинового песка, а g = p = 1001. Государство обещает каждый день уменьшать одно из чисел g и p на единицу, так что через 2000 дней они оба станут единицами; но последовательность уменьшений неизвестна. Может ли банкир каждый день менять песок так, чтобы в конце гарантированно получить хотя бы по 2 кг каждого песка? Решение |
Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 737]
Перед Алёшей 100 закрытых коробочек, в каждой – либо красный, либо синий кубик. У Алёши на счету есть рубль. Он подходит к любой закрытой коробочке, объявляет цвет и ставит любую сумму (можно нецелое число копеек, но не больше, чем у него на счету в данный момент). Коробочка открывается, и Алёшин счет увеличивается или уменьшается на поставленную сумму в зависимости от того, угадан или не угадан цвет кубика. Игра продолжается, пока не будут открыты все все коробочки. Какую наибольшую сумму на счету может гарантировать себе Алёша, если ему известно, что
В некотором государстве ценятся золотой и платиновый песок. Золото можно менять на платину, а платину на золото по курсу, который определяется натуральными числами g и p так: x граммов золотого песка равноценны y граммам платинового, если xp = yg (числа x и y могут быть нецелыми). Сейчас у банкира есть по килограмму золотого и платинового песка, а g = p = 1001. Государство обещает каждый день уменьшать одно из чисел g и p на единицу, так что через 2000 дней они оба станут единицами; но последовательность уменьшений неизвестна. Может ли банкир каждый день менять песок так, чтобы в конце гарантированно получить хотя бы по 2 кг каждого песка?
Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни. Какое наибольшее суммарное количество очков он может при этом получить?
Страница: << 97 98 99 100 101 102 103 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|