ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой. |
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 603]
В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что ∠A = 2∠B тогда и только тогда, когда AC = 2MD.
Через вершину A равностороннего треугольника ABC проведена прямая, не пересекающая отрезок BC. По разные стороны от точки A на этой прямой взяты точки M и N так, что AM = AN = AB (точка B внутри угла MAC). Докажите, что прямые AB, AC, BN, CM образуют вписанный четырёхугольник.
В треугольнике ABC на сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и угол DEF – прямой.
Внутри параллелограмма ABCD отметили точку E так, что CD = CE.
Страница: << 73 74 75 76 77 78 79 >> [Всего задач: 603] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|