Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 330]
В треугольнике ABC проведены высота AH, биссектриса BL и медиана CM. Известно, что в треугольнике HLM прямая AH является высотой, а BL – биссектрисой. Докажите, что CM является в этом треугольнике медианой.
В треугольнике ABC точка M – середина AB, а точка D – основание высоты CD. Докажите, что ∠A = 2∠B тогда и только тогда, когда AC = 2MD.
В треугольнике ABC со сторонами AB = 4, AC = 6 проведена биссектриса угла A. На эту биссектрису опущен перпендикуляр BH.
Найдите MH, где M – середина BC.
Внутри параллелограмма ABCD отметили точку E так, что CD = CE.
Докажите, что прямая DE перпендикулярна прямой, проходящей через середины отрезков AE и BC.
|
|
Сложность: 3 Классы: 8,9,10
|
В треугольнике ABC высота AH проходит через середину медианы BM.
Докажите, что в треугольнике BMC также одна из высот проходит через середину одной из медиан.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 330]