ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Точка выходит из начала координат на прямой и делает a шагов на единицу вправо, b шагов на единицу влево в каком-то порядке, причём a > b. Размахом блуждания точки назовём разность между наибольшей и
наименьшей координатами точки за всё время блуждания. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]
Докажите, что для любого n существует окружность, на которой
лежит ровно n целочисленных точек.
На клетчатой бумаге нарисован замкнутый путь (по линиям сетки). Доказать, что он имеет чётную длину (сторона клетки имеет длину 1).
Точка выходит из начала координат на прямой и делает a шагов на единицу вправо, b шагов на единицу влево в каком-то порядке, причём a > b. Размахом блуждания точки назовём разность между наибольшей и
наименьшей координатами точки за всё время блуждания.
В прямоугольном бильярде размером p×2q, где p и q – нечётные числа, сделаны лузы в каждом углу и в середине каждой стороны длины 2q. Из угла выпущен шарик под углом 45° к стороне. Доказать, что шарик обязательно попадёт в одну из средних луз.
В выпуклом многоугольнике на плоскости содержится не меньше m2+1 точек с целыми координатами. Докажите, что в нем найдется m+1 точек с целыми координатами, которые лежат на одной прямой.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 56]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке