ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.) Решение |
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 1110]
Какое наименьшее число клеток надо отметить на доске 15×15 так, чтобы слон с любой клетки доски бил не менее двух отмеченных клеток? (Слон бьёт и ту клетку, где стоит.)
Василиса Премудрая расставляет все натуральные числа от 1 до n², где n > 1, в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?
Пончик закусывал в придорожном кафе, когда мимо него проехал автобус. Через три плюшки после автобуса мимо Пончика проехал мотоцикл, а ещё через три плюшки – автомобиль. Мимо Сиропчика, который закусывал в другом кафе у той же дороги, они проехали в другом порядке: сначала – автобус, через три плюшки – автомобиль, а ещё через три плюшки – мотоцикл. Известно, что Пончик и Сиропчик всегда едят плюшки с одной и той же постоянной скоростью. Найдите скорость автобуса, если скорость автомобиля – 60 км/ч, а скорость мотоцикла – 30 км/ч.
В каждой клетке таблицы размером 13×13 записано одно из натуральных чисел от 1 до 25. Клетку назовём хорошей, если среди двадцати пяти чисел, записанных в ней и во всех клетках одной с ней горизонтали и одной с ней вертикали, нет одинаковых. Могут ли все клетки одной из главных диагоналей оказаться хорошими?
Из Златоуста в Миасс выехали одновременно "ГАЗ", "МАЗ" и "КамАЗ". "КамАЗ", доехав до Миасса, сразу повернул назад и встретил "МАЗ" в 18 км, а "ГАЗ" – в 25 км от Миасса. "МАЗ", доехав до Миасса, также сразу повернул назад и встретил "ГАЗ" в 8 км от Миасса. Каково расстояние от Златоуста до Миасса?
Страница: << 109 110 111 112 113 114 115 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|