Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]
|
|
Сложность: 4- Классы: 9,10,11
|
В выпуклом многоугольнике, в котором нечётное число вершин, равное 2n + 1, выбирают независимо друг от друга две случайные диагонали.
Найдите вероятность того, что эти диагонали пересекаются внутри многоугольника.
На сколько частей разделяют
n-угольник его диагонали, если никакие три
диагонали не пересекаются в одной точке?
|
|
Сложность: 4- Классы: 8,9,10,11
|
С многоугольником разрешено проделывать следующую операцию.
Если многоугольник делится отрезком AB на на два многоугольника,
то один из этих многоугольников можно отразить симметрично
относительно серединного перпендикуляра к отрезку AB. (Операция
разрешается только в том случае, когда
в результате получается несамопересекающийся
многоугольник.) Можно ли путем нескольких таким операций получить
из квадрата правильный треугольник?
|
|
Сложность: 4+ Классы: 8,9,10
|
На рис. изображен шестиугольник, разбитый на чёрные и белые треугольники так, что каждые два треугольника имеют либо общую сторону (и тогда они окрашены в разные цвета), либо общую вершину, либо не имеют общих точек, а каждая сторона шестиугольника является стороной одного из черных треугольников.
Докажите, что десятиугольник разбить таким образом нельзя.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан выпуклый 2000-угольник, никакие три диагонали которого не пересекаются
в одной точке. Каждая из его диагоналей покрашена в один из 999 цветов.
Докажите, что существует треугольник, все стороны которого целиком
лежат на диагоналях одного цвета. (Вершины треугольника не
обязательно должны оказаться вершинами исходного многоугольника.)
Страница:
<< 1 2 3 4 5 6 7 [Всего задач: 35]