ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

   Решение

Задачи

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 177]      



Задача 65874

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10

На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа?

Прислать комментарий     Решение

Задача 116036

Темы:   [ Шахматная раскраска ]
[ Четность и нечетность ]
[ Неравенство Коши ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Квадратная доска разделена на n² прямоугольных клеток  n – 1  горизонтальными и  n – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Прислать комментарий     Решение

Задача 65880

Темы:   [ Системы линейных уравнений ]
[ Системы алгебраических нелинейных уравнений ]
[ Системы алгебраических неравенств ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 9,10,11

На 2016 красных и 2016 синих карточках написаны положительные числа, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то 64 чисел, а на карточках другого цвета – попарные произведения тех же 64 чисел. Всегда ли можно определить, на карточках какого цвета написаны попарные суммы?

Прислать комментарий     Решение

Задача 109704

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Неравенство Коши ]
[ Подсчет двумя способами ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 8,9,10

Автор: Храбров А.

Докажите, что при любом натуральном n справедливо неравенство  

Прислать комментарий     Решение

Задача 111040

Темы:   [ Делимость чисел. Общие свойства ]
[ Квадратные уравнения. Теорема Виета ]
[ Уравнения в целых числах ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4+
Классы: 9,10,11

Найдите все такие натуральные  (a, b),  что a2 делится на натуральное число  2ab2b3 + 1.

Прислать комментарий     Решение

Страница: << 30 31 32 33 34 35 36 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .