ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть a – положительный корень уравнения  x2017x – 1 = 0,  а b – положительный корень уравнения  y4034y = 3a.
  а) Сравните a и b.
  б) Найдите десятый знак после запятой числа  |a – b|.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



Задача 61279

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

а) Докажите, что при  4p³ + 27q² < 0  уравнение  x³ + px + q = 0  заменой  x = αy + β  сводится к уравнению ay³ – 3by² – 3ay + b = 0    (*)
от переменной y.

б) Докажите, что решениями уравнения (*) будут числа   y1 = tg ,   y2 = tg ,   y3 = tg ,   где φ определяется из условий:
sin φ = ,   cos φ = .

Прислать комментарий     Решение

Задача 61280

Тема:   [ Уравнения высших степеней (прочее) ]
Сложность: 4
Классы: 9,10,11

  Этот метод позволяет решать произвольное уравнение 4-й степени путем сведения его к решению вспомогательного кубического уравнения и двух квадратных уравнений.
  а) Докажите, что любое уравнение 4-й степени можно привести к виду  x4 = Ax² + Bx + C.     (*)
  б) Введём действительный параметр α и перепишем уравнение (*) в виде  x4 + 2αx² + α² = (A + 2α)x² + Bx + (C + α²).     (**)
    Докажите, что для некоторого  α > – A/2  правая часть равенства (**) превращается в полный квадрат.
  в) Пользуясь равенством (**), опишите метод нахождения корней уравнения (*).

Прислать комментарий     Решение

Задача 61287

Темы:   [ Уравнения высших степеней (прочее) ]
[ Тригонометрические замены ]
Сложность: 4
Классы: 10,11

Сколько корней на отрезке  [0, 1]  имеет уравнение   8x(1 – 2x²)(8x4 – 8x² + 1) = 1?

Прислать комментарий     Решение

Задача 66091

Темы:   [ Уравнения высших степеней (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Классические неравенства (прочее) ]
[ Разложение на множители ]
[ Возрастание и убывание. Исследование функций ]
Сложность: 4
Классы: 9,10,11

Пусть a – положительный корень уравнения  x2017x – 1 = 0,  а b – положительный корень уравнения  y4034y = 3a.
  а) Сравните a и b.
  б) Найдите десятый знак после запятой числа  |a – b|.

Прислать комментарий     Решение

Задача 109166

Темы:   [ Уравнения высших степеней (прочее) ]
[ Замена переменных ]
Сложность: 4
Классы: 9,10,11

Решить уравнение  (x² – x + 1)4 – 10x²(x² – x + 1)² + 9x4 = 0.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 38]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .