Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 126]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан треугольник и 10 прямых. Оказалось, что каждая прямая равноудалена от каких-то двух вершин треугольника.
Докажите, что или две из этих прямых параллельны, или три из них пересекаются в одной точке.
Какое наибольшее количество прямоугольников 4*1 можно
разместить в квадрате 6*6 (не нарушая границ клеток)?
|
|
Сложность: 3+ Классы: 10,11
|
Среди углов каждой боковой грани пятиугольной призмы есть угол φ. Найдите все возможные значения φ.
|
|
Сложность: 3+ Классы: 7,8,9
|
На некоторых клетках шахматной доски лежит по конфете. Известно, что в каждой строке, в каждом столбце и в каждой диагонали (любой длины, даже состоящей из одной клетки) лежит чётное количество конфет (возможно, ни одной). Какое максимальное количество конфет может лежать на доске?
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 126]