ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости дан отрезок AB. Рассмотрим всевозможные остроугольные треугольники со стороной AB. Найдите геометрическое место
  а) вершин их наибольших углов;
  б) их центров вписанных окружностей.

   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



Задача 66208

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9

На плоскости дан отрезок AB. Рассмотрим всевозможные остроугольные треугольники со стороной AB. Найдите геометрическое место
  а) вершин их наибольших углов;
  б) их центров вписанных окружностей.

Прислать комментарий     Решение

Задача 77956

Тема:   [ ГМТ с ненулевой площадью ]
Сложность: 3+
Классы: 8,9

Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.

Прислать комментарий     Решение

Задача 78083

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 9

Все точки данного отрезка AB проектируются на всевозможные прямые, проходящие через данную точку O. Найти геометрическое место этих проекций.
Прислать комментарий     Решение


Задача 54008

Темы:   [ ГМТ с ненулевой площадью ]
[ Диаметр, основные свойства ]
Сложность: 4-
Классы: 8,9

Найдите геометрическое место точек, из которых данный отрезок виден: а) под острым углом; б) под тупым углом.

Прислать комментарий     Решение


Задача 78110

Темы:   [ ГМТ с ненулевой площадью ]
[ Метод координат на плоскости ]
Сложность: 4-
Классы: 8,9

Прямые OA и OB перпендикулярны. Найти геометрическое место концов M таких ломаных OM длины 1, которые каждая прямая, параллельная OA или OB, пересекает не более чем в одной точке.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 25]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .