ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Диагонали выпуклого четырехугольника делят его на четыре подобных треугольника. Докажите, что в него можно вписать окружность.

   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 137]      



Задача 66177

Темы:   [ Описанные четырехугольники ]
[ Перпендикулярные прямые ]
[ Вписанные и описанные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3+
Классы: 8,9,10

Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.

Прислать комментарий     Решение

Задача 66237

Темы:   [ Описанные четырехугольники ]
[ Подобные треугольники (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10

Диагонали выпуклого четырехугольника делят его на четыре подобных треугольника. Докажите, что в него можно вписать окружность.

Прислать комментарий     Решение

Задача 98559

Темы:   [ Описанные четырехугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Стороны AB, BC, CD и DA четырёхугольника ABCD касаются некоторой окружности в точках K, L, M и N соответственно, S – точка пересечения отрезков KM и LN. Известно, что вокруг четырёхугольника SKBL можно описать окружность. Докажите, что вокруг четырёхугольника SNDM также можно описать окружность.

Прислать комментарий     Решение

Задача 102355

Темы:   [ Описанные четырехугольники ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

В равнобочную трапецию ABCD ( BC$ \Vert$AD) вписана окружность, BC : AD = 1 : 3, площадь трапеции равна $ {\frac{\sqrt{3}}{2}}$. Найдите AB.
Прислать комментарий     Решение


Задача 102469

Темы:   [ Описанные четырехугольники ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD, описанной около окружности, BC$ \Vert$AD, AB = CD, $ \angle$BAD = 45o. Площадь трапеции равна 10. Найдите AB.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 137]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .