ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнение  (x + 1)² + (x + 2)² + ... + (x + 10)² = (x + 1 + 2 + ... + 10)².

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 138]      



Задача 60608

Темы:   [ Цепные (непрерывные) дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 10,11

Предположим, что число α задано бесконечной цепной дробью  α = [a0; a1, ..., an, ...].  Докажите, что     где Qk – знаменатели подходящих дробей.

Прислать комментарий     Решение

Задача 60842

 [Число Фейнмана]
Темы:   [ Периодические и непериодические дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Объясните поведение следующей десятичной дроби и найдите её период:  1/243 = 0,004115226337448...

Прислать комментарий     Решение

Задача 61437

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Пусть  f(x) – многочлен степени m. Докажите, что если  m < n,  то  Δnf(x) = 0.  Чему равна величина Δmf(x)?

Прислать комментарий     Решение

Задача 66296

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9

Решите уравнение  (x + 1)² + (x + 2)² + ... + (x + 10)² = (x + 1 + 2 + ... + 10)².
Прислать комментарий     Решение


Задача 107677

Темы:   [ Геометрическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Числовые таблицы и их свойства ]
Сложность: 3+
Классы: 8,9,10

Таблица имеет форму квадрата со стороной длины n. В первой строчке таблицы стоит одно число – 1. Во второй – два числа – две двойки, в третьей – три четвёрки, и т.д.:

(здесь нарисован квадрат 4×4). В каждой следующей строчке стоит следующая степень двойки. Длина строчек сначала растёт, а затем убывает так, чтобы получился квадрат. Докажите, что сумма всех чисел таблицы есть квадрат некоторого целого числа.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 138]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .