ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 138]      



Задача 98319

Темы:   [ Произведения и факториалы ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Алгебраические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите неравенство  

Прислать комментарий     Решение

Задача 61234

Темы:   [ Обратные тригонометрические функции ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10,11

Найдите сумму:

arctg $\displaystyle {\dfrac{r}{1+a_1\cdot
a_2}}$ + arctg $\displaystyle {\dfrac{r}{1+a_2\cdot
a_3}}$ +...+ arctg $\displaystyle {\dfrac{r}{1+a_n\cdot a_{n+1}}}$,

если числа a1, a2,..., an + 1 образуют арифметическую прогрессию с разностью r (a1 > 0, r > 0).

Прислать комментарий     Решение

Задача 61503

Темы:   [ Числа Фибоначчи ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 9,10,11

Докажите, что бесконечная сумма

  0, 1
+ 0, 01
+ 0, 002
+ 0, 0003
+ 0, 00005
+ 0, 000008
+ 0, 0000013
  ...

сходится к рациональному числу.

Прислать комментарий     Решение

Задача 64413

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 4
Классы: 10,11

Пусть  P(x) = anxn + ... + a1x + a0  – многочлен с целыми коэффициентами.
Докажите, что хотя бы одно из чисел  |3n+1P(n + 1)|,  ...,  |31P(1)|,  |1 – P(0)|  не меньше 1.

Прислать комментарий     Решение

Задача 64453

Темы:   [ Обыкновенные дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Простые числа и их свойства ]
Сложность: 4
Классы: 8,9,10

Число    представили в виде несократимой дроби.
Докажите, что если  3n + 1  – простое число, то числитель получившейся дроби делится на  3n + 1.

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 138]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .