Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 140]
|
|
|
Сложность: 5- Классы: 10,11
|
Имеется натуральное число n > 1970. Возьмём остатки от деления числа 2n на 2, 3, 4, ..., n. Доказать, что сумма этих остатков больше 2n.
|
|
|
Сложность: 5 Классы: 9,10,11
|
В городе Удоеве выборы мэра проходят следующим
образом. Если в очередном туре голосования никто из кандидатов не набрал больше
половины голосов, то проводится следующий тур с участием всех кандидатов, кроме
последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну;
если кандидат набрал больше половины голосов, то он становится мэром и выборы
заканчиваются.) Каждый избиратель в каждом туре голосует за одного из
кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова
голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за
одного и того же кандидата из числа оставшихся.
На очередных выборах
баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре
k-е место по числу голосов. Определите наибольшее возможное значение
k, если Остап Бендер был избран
а) в 1002-м туре;
б) в 1001-м
туре.
|
|
|
Сложность: 5+ Классы: 8,9,10
|
По кругу стоят
2009
целых неотрицательных чисел, не превышающих
100
. Разрешается прибавить по
1
к двум соседним числам,
причем с любыми двумя соседними числами эту операцию можно проделать не более
k раз. При каком наименьшем
k все числа
гарантированно можно сделать равными?
|
|
|
Сложность: 6+ Классы: 8,9,10,11
|
Все натуральные числа, в десятичной записи которых не больше
n цифр, разбили на два множества следующим образом. В первое множество входят числа с нечётной суммой цифр, а во
второе — c чётной суммой цифр. Докажите, что для любого натурального числа
k £ n сумма
k-х степеней всех чисел первого множества равна сумме
k-х степеней всех чисел второго множества.
|
|
|
Сложность: 2+ Классы: 8,9,10
|
Докажите неравенство для натуральных n > 1:
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 140]