ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше.

   Решение

Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1027]      



Задача 66510

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 4,5,6,7

Семь городов соединены по кругу семью односторонними авиарейсами (см. рисунок). Назначьте (нарисуйте стрелочками) ещё несколько односторонних рейсов так, чтобы от любого города до любого другого можно было бы добраться, сделав не более двух пересадок. Постарайтесь сделать число дополнительных рейсов как можно меньше.

Прислать комментарий     Решение


Задача 66535

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 8,9,10

Король вызвал двух мудрецов и объявил им задание: первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвертое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
Прислать комментарий     Решение


Задача 66907

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Алгебра и арифметика (прочее) ]
Сложность: 3+
Классы: 9,10,11

Автор: Соколов А.

Существует ли такое натуральное $n$, что для любых вещественных чисел $x$ и $y$ найдутся вещественные числа $a_1, \ldots, a_n$, удовлетворяющие равенствам $$x = a_1 + \ldots + a_n\quad \text{и} \quad y = \frac{1}{a_1}+ \ldots + \frac{1}{a_n}?$$
Прислать комментарий     Решение


Задача 66948

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Касающиеся окружности ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9,10,11

Есть набор монет радиусами $1, 2, 3,\ldots, 10$ см. Можно положить две из них на стол так, чтобы они касались друг друга, и добавлять монеты по одной так, чтобы очередная касалась хотя бы двух уже лежащих. Новую монету нельзя класть на старую. Можно ли положить несколько монет так, чтобы центры каких-то трёх монет оказались на одной прямой?
Прислать комментарий     Решение


Задача 67097

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9,10,11

В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?
Прислать комментарий     Решение


Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 1027]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .