ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Ёжик может встретить в тумане либо Сивого Мерина, либо Сивую Кобылу, либо своего друга Медвежонка. Однажды Ёжику вышли навстречу все трое, но туман был густой, и Ёжик не видел, кто из них кто, а потому попросил представиться.

Тот, кто, с точки зрения Ёжика, был слева, сказал: «Рядом со мной Медвежонок».

Тот, кто стоял справа, заявил: «Это тебе сказала Сивая Кобыла».

Наконец, тот, кто был в центре, сообщил: «Слева от меня Сивый Мерин».

Определите, кто где стоял, если известно, что Сивый Мерин врёт всегда, Сивая Кобыла — иногда, а Медвежонок Ёжику не врёт никогда?

   Решение

Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1311]      



Задача 66634

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 5,6,7

Ёжик может встретить в тумане либо Сивого Мерина, либо Сивую Кобылу, либо своего друга Медвежонка. Однажды Ёжику вышли навстречу все трое, но туман был густой, и Ёжик не видел, кто из них кто, а потому попросил представиться.

Тот, кто, с точки зрения Ёжика, был слева, сказал: «Рядом со мной Медвежонок».

Тот, кто стоял справа, заявил: «Это тебе сказала Сивая Кобыла».

Наконец, тот, кто был в центре, сообщил: «Слева от меня Сивый Мерин».

Определите, кто где стоял, если известно, что Сивый Мерин врёт всегда, Сивая Кобыла — иногда, а Медвежонок Ёжику не врёт никогда?

Прислать комментарий     Решение

Задача 102854

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

Решить ребус AC · CC · K = 2002 (разным цифрам соответствуют разные буквы и наоборот).
Прислать комментарий     Решение


Задача 31361

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2
Классы: 6,7,8

Квадрат раскрашен в два цвета. Можно любой прямоугольник перекрашивать в преобладающий в нем цвет. Доказать, что такими операциями можно сделать весь квадрат одноцветным.

Прислать комментарий     Решение


Задача 35609

Тема:   [ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

Имеются два кошелька и одна монета. Внутри первого кошелька одна монета, и внутри второго кошелька одна монета. Как такое может быть?
Прислать комментарий     Решение


Задача 60906

Тема:   [ Математическая логика (прочее) ]
Сложность: 2
Классы: 7,8

Коля Васин задумал число: 1, 2 или 3. Вы задаете ему только один вопрос, на который он может ответить `` да'', ``нет'' или ``не знаю''. Сможете ли вы угадать число, задав всего лишь один вопрос?

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .