ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1311]      



Задача 32045

Темы:   [ Игры-шутки ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 2+
Классы: 5,6,7

Два гроссмейстера по очереди ставят на шахматную доску ладьи (за один ход – одну ладью) так, чтобы они не били друг друга. Тот, кто не сможет поставить ладью, проигрывает. Кто выиграет при правильной игре – первый или второй гроссмейстер?

Прислать комментарий     Решение

Задача 32790

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 7,8

Известно, что среди членов правительства Лимонии (а всего в нем 20 членов) заведомо имеется хотя бы один честный, а также что из любых двух хотя бы один -- взяточник. Сколько в правительстве взяточников?
Прислать комментарий     Решение


Задача 34945

Тема:   [ Взвешивания ]
Сложность: 2+

Дано 27 монет, из которых одна фальшивая, причём фальшивая монета легче настоящей.
Как за три взвешивания на чашечных весах без гирь определить фальшивую монету?

Прислать комментарий     Решение

Задача 35253

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 2+
Классы: 7,8,9

Как отмерить 15 минут, пользуясь песочными часами на 7 минут и на 11 минут?

Прислать комментарий     Решение

Задача 35347

Тема:   [ Взвешивания ]
Сложность: 2+
Классы: 7,8

В корзине лежат 13 яблок. Имеются весы, с помощью которых можно узнать суммарный вес любых двух яблок.
Придумайте способ выяснить за 8 взвешиваний суммарный вес всех яблок.

Прислать комментарий     Решение

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 1311]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .