ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка $H$ лежит на стороне $AB$ правильного пятиугольника $ABCDE$. Окружность с центром $H$ и радиусом $HE$ пересекает отрезки $DE$ и $CD$ в точках $G$ и $F$ соответственно. Известно, что $DG=AH$. Докажите, что $CF=AH$. |
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 352]
На сторонах AB, BC, CD и DA вписанного четырёхугольника ABCD, длины которых равны a, b, c и d, внешним образом построены прямоугольники размером a×с, b×d, с×a и d×b. Докажите, что их центры являются вершинами прямоугольника.
Дан выпуклый пятиугольник ABCDE, все стороны которого равны между собой. Известно, что угол A равен 120°, угол C равен 135°, а угол D равен n°.
Точка $H$ лежит на стороне $AB$ правильного пятиугольника $ABCDE$. Окружность с центром $H$ и радиусом $HE$ пересекает отрезки $DE$ и $CD$ в точках $G$ и $F$ соответственно. Известно, что $DG=AH$. Докажите, что $CF=AH$.
Угол при вершине A равнобедренного треугольника ABC (AB = AC) равен 20°. На стороне AB отложим отрезок AD, равный BC. Найдите угол BCD.
Дан тетраэдр ABCD. Вписанная в него сфера σ касается грани ABC в точке T. Сфера σ' касается грани ABC в точке T' и продолжений граней ABD, BCD, CAD. Докажите, что прямые AT и AT' симметричны относительно биссектрисы угла BAC.
Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке