ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось. Решение |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 2440]
Сумма трёх различных наименьших делителей некоторого числа A равна 8. На сколько нулей может оканчиваться число A?
В тридевятом царстве есть только два вида монет: 16 и 27 тугриков. Можно ли заплатить за одну тетрадку ценой в 1 тугрик и получить сдачу?
Ваня расставил в кружках различные цифры, а внутри каждого треугольника записал либо сумму, либо произведение цифр в его вершинах. Потом он стёр цифры в кружочках. Впишите в кружочки различные цифры так, чтобы условие выполнялось.
Решить в целых числах уравнение xy + 3x – 5y = – 3.
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 2440] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|