ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?

   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 215]      



Задача 67008

Темы:   [ Теория алгоритмов (прочее) ]
[ Числовые таблицы и их свойства ]
[ Оценка + пример ]
Сложность: 3+
Классы: 8,9,10,11

16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы $4\times4$ так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
Прислать комментарий     Решение


Задача 66854

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Числовые таблицы и их свойства ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Дидин М.

Для каких $N$ можно расставить в клетках квадрата N×N действительные числа так, чтобы среди всевозможных сумм чисел на парах соседних по стороне клеток встречались все целые числа от 1 до $2(N - 1)N$ включительно (ровно по одному разу)?

Прислать комментарий     Решение

Задача 78265

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 10,11

В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Прислать комментарий     Решение

Задача 105100

Темы:   [ Теория игр (прочее) ]
[ Числовые таблицы и их свойства ]
[ Замощения костями домино и плитками ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 8,9,10

Лёша задумал двузначное число (от 10 до 99). Гриша пытается его отгадать, называя двузначные числа. Считается, что он отгадал, если одну цифру он назвал правильно, а в другой ошибся не более чем на единицу (например, если задумано число 65, то 65, 64 и 75 подходят, а 63, 76 и 56 – нет). Придумайте способ, гарантирующий Грише успех за 22 попытки (какое бы число ни задумал Лёша).

Прислать комментарий     Решение

Задача 105101

Темы:   [ Теория игр (прочее) ]
[ Числовые таблицы и их свойства ]
[ Замощения костями домино и плитками ]
[ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Покажите, что в условиях задачи 105100 нет способа, гарантирующего Грише успех за 18 попыток.

Прислать комментарий     Решение

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 215]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .