ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

На сторонах треугольника ABC как на основаниях построены равнобедренные подобные треугольники AB1C и AC1B внешним образом и BA1C внутренним образом. Докажите, что AB1A1C1 – параллелограмм.

Вниз   Решение


Если Аня идёт в школу пешком, а обратно едет на автобусе, то всего на дорогу она тратит 1,5 ч. Если же она едет на автобусе в оба конца, то весь путь у неё занимает 30 мин. Сколько времени потратит Аня на дорогу, если и в школу и из школы она будет идти пешком?

ВверхВниз   Решение


Хорда AB делит окружность на две дуги, из которых меньшая равна 130o, а большая делится хордой AC в отношении 31:15, считая от точки A. Найдите угол BAC.

ВверхВниз   Решение


Коля и Витя играют в следующую игру на бесконечной клетчатой бумаге. Начиная с Коли, они по очереди отмечают узлы клетчатой бумаги — точки пересечения вертикальных и горизонтальных прямых. При этом каждый из них своим ходом должен отметить такой узел, что после этого все отмеченные узлы лежали в вершинах выпуклого многоугольника (начиная со второго хода Коли). Тот из играющих, кто не сможет сделать очередного хода, считается проигравшим. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Известно, что среди членов некоторой арифметической прогрессии a1, a2, a3, a4, ... есть числа  
Докажите,что эта прогрессия состоит из целых чисел.

ВверхВниз   Решение


На стороне CD ромба ABCD нашлась такая точка K, что  AD = BK.  Пусть F – точка пересечения диагонали BD и серединного перпендикуляра к стороне BC. Докажите, что точки A, F и K лежат на одной прямой.

ВверхВниз   Решение


Сфера радиуса касается плоскостей всех боковых граней некоторой пирамиды в точках, лежащих на сторонах основания. Найдите высоту пирамиды, если её основанием служит треугольник со сторонами 5, 6 и 9.

ВверхВниз   Решение


В треугольнике ABC точки A', B', C' лежат на сторонах BC, CA и AB соответственно. Известно, что  ∠AC'B' = ∠B'A'C,  ∠CB'A' = ∠A'C'B,  ∠BA'C' = ∠C'B'A.  Докажите, что точки A', B', C' – середины сторон треугольника ABC.

ВверхВниз   Решение


Внутри квадрата со стороной 1 расположены несколько кругов, сумма радиусов которых равна 0,51. Доказать, что найдется прямая, которая параллельна одной из сторон квадрата и пересекает, по крайней мере, 2 круга.

ВверхВниз   Решение


Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 17]      



Задача 116145

Темы:   [ Логика и теория множеств (прочее) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 2+
Классы: 7,8,9

Из четырёх неравенств  2x > 70,  x < 100,  4x > 25  и  x > 5  два истинны и два ложны. Найдите значение x, если известно, что оно целое.

Прислать комментарий     Решение

Задача 66563

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.
Прислать комментарий     Решение


Задача 67145

Темы:   [ Логика и теория множеств (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 6,7,8,9

Можно ли раскрасить все натуральные числа, большие 1, в три цвета (каждое число – в один цвет, все три цвета должны использоваться) так, чтобы цвет произведения любых двух чисел разного цвета отличался от цвета каждого из сомножителей?
Прислать комментарий     Решение


Задача 67178

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 7,8,9

На столе в ряд стоят $23$ шкатулки, в одной из которых находится приз. На каждой шкатулке написано либо «Здесь приза нет», либо «Приз в соседней шкатулке». Известно, что ровно одно из этих утверждений правдиво. Что написано на средней шкатулке?
Прислать комментарий     Решение


Задача 67455

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Герцог Сумматор выбрал некоторые вещественные числа (хотя бы одно, но, возможно, бесконечное количество). То же самое сделал герцог Вычитатор. Оказалось, что если $x$ является числом Сумматора, а $y$ является числом Вычитатора, то $x+y$ является числом Сумматора, а $y - x$ является числом Вычитатора. Обязательно ли все числа Сумматора являются числами Вычитатора?
Прислать комментарий     Решение


Страница: 1 2 3 4 >> [Всего задач: 17]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .