ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими?

Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)

   Решение

Задачи

Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 1308]      



Задача 67194

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 6
Классы: 9,10,11

На острове живут хамелеоны пяти цветов. Когда один хамелеон кусает другого, цвет укушенного хамелеона меняется по некоторому правилу, причём новый цвет зависит только от цвета укусившего и цвета укушенного. Известно, что $2023$ красных хамелеона могут договориться о последовательности укусов, после которой все они станут синими. При каком наименьшем $k$ можно гарантировать, что $k$ красных хамелеонов смогут договориться так, чтобы стать синими?

Например, правила могут быть такими: если красный хамелеон кусает зелёного, укушенный меняет цвет на синий; если зелёный кусает красного, укушенный остаётся красным, то есть «меняет цвет на красный»; если красный хамелеон кусает красного, укушенный меняет цвет на жёлтый, и так далее. (Конкретные правила смены цветов могут быть устроены иначе.)
Прислать комментарий     Решение


Задача 73626

Темы:   [ Теория игр (прочее) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 6
Классы: 7,8,9

Автор: Савин А.П.

Двое играют в «крестики–нолики» на бесконечном листе клетчатой бумаги. Начинающий ставит крестик в любую клетку. Каждым следующим своим ходом он должен ставить крестик в свободную клетку, соседнюю с одной из клеток, где уже стоит крестик; соседней с данной клеткой считаем любую, имеющую с ней общую сторону или общую вершину. Второй играющий каждым своим ходом может ставить сразу три нолика в любые три свободные клетки (не обязательно рядом друг с другом или с ранее поставленными ноликами). На рисунке изображена одна из позиций, которые могут возникнуть после третьего хода. Докажите, что как бы ни играл первый игрок, второй может его «запереть»: добиться того, чтобы первому было некуда поставить крестик. Исследуйте аналогичные игры, в которых второму разрешено за один ход ставить не три, а два или даже только один нолик. Каков здесь будет результат при правильной игре партнёров: удастся ли ноликам «запереть» крестики (и можно ли оценить сверху число ходов, которые могут «продержаться» крестики) или же крестики могут играть бесконечно долго?

Попробуйте изучить другие варианты этой игры: когда соседними с данной считаем только клетки, имеющие с ней общую сторону; когда плоскость разбита не на квадраты, а на правильные шестиугольники; когда первому разрешено ставить сразу p крестиков, а второму — q ноликов.
Прислать комментарий     Решение


Задача 73775

Темы:   [ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Показательные неравенства ]
[ Логарифмические неравенства ]
Сложность: 6+
Классы: 9,10,11

По заданному ненулевому x значение x8 можно найти за три арифметических действия: x2 = x · x, x4 = x2 · x2, x8 = x4 · x4, а x15 за пять действий: первые три — те же самые, затем x8 · x8 = x16 и x16 : x = x16. Докажите, что

а) x16 можно найти за 12 действий (умножений и делений);

б) для любого натурального n возвести x в n-ю степень можно не более чем за 1 + 1,5 · log2n действий.
Прислать комментарий     Решение


Задача 111884

Темы:   [ Взвешивания ]
[ Индукция ]
Сложность: 7-
Классы: 8,9,10,11

Автор: Кноп К.А.

В нашем распоряжении имеются 32k неотличимых по виду монет, одна из которых фальшивая– она весит чуть легче настоящей. Кроме того, у нас есть трое двухчашечных весов. Известно, что двое весов исправны, а одни– сломаны (показываемый ими исход взвешивания никак не связан с весом положенных на них монет, т.е. может быть как верным, так и искаженным в любую сторону, причем на разных взвешиваниях– искаженным по-разному). При этом неизвестно, какие именно весы исправны, а какие сломаны. Как определить фальшивую монету за 3k + 1 взвешиваний?
Прислать комментарий     Решение


Задача 73688

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 7+

Автор: Ионин Ю.И.

Двое играют в следующую игру. Один называет цифру, а другой вставляет её по своему усмотрению вместо одной из звёздочек в следующей разности:

********.

Затем первый называет ещё одну цифру, второй ставит её, первый опять называет цифру, и так играют до тех пор, когда все звёздочки будут заменены цифрами. Первый стремится к тому, чтобы разность получилась как можно больше, а второй — чтобы она стала как можно меньше. Докажите, что

а) второй может расставлять цифры так, чтобы полученная разность стала не больше 4000, независимо от того, какие цифры называл первый;

б) первый может называть цифры так, чтобы разность стала не меньше 4000, независимо от того, куда расставляет цифры второй.
Прислать комментарий     Решение


Страница: << 178 179 180 181 182 183 184 >> [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .