Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Курский М.

Пусть $H$ – ортоцентр остроугольного треугольника $ABC$; $E$, $F$ – такие точки на сторонах $AB$, $AC$ соответственно, что $AEHF$ – параллелограмм; $X$, $Y$ – точки пересечения прямой $EF$ с описанной окружностью $\omega$ треугольника $ABC$; $Z$ – точка $\omega$, диаметрально противоположная $A$. Докажите, что $H$ – ортоцентр треугольника $XYZ$.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 517]      



Задача 115651

Темы:   [ Вспомогательные подобные треугольники ]
[ Вписанный угол равен половине центрального ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

Через центр O окружности, описанной около неравнобедренного треугольника ABC, проведены прямые, перпендикулярные сторонам AB и AC. Эти прямые пересекают высоту AD треугольника ABC в точках P и Q. Точка M – середина стороны BC, а S – центр описанной окружности треугольника OPQ. Докажите, что  ∠BAS = ∠CAM.

Прислать комментарий     Решение

Задача 115657

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема косинусов ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Медиана, проведенная к гипотенузе ]
Сложность: 4-
Классы: 8,9

В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.

Прислать комментарий     Решение

Задача 67345

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9,10,11

Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
Прислать комментарий     Решение


Задача 35216

Темы:   [ Вспомогательные подобные треугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10

В окружность вписан выпуклый шестиугольник ABCDEF.
  а) Известно, что диагонали AD, BE, CF пересекаются в одной точке. Докажите, что  AB·CD·EF = BC·DE·FA.
  б) Известно, что  AB·CD·EF = BC·DE·FA.  Докажите, что диагонали AD, BE, CF пересекаются в одной точке.

Прислать комментарий     Решение

Задача 53896

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Центр масс ]
Сложность: 4
Классы: 8,9

Через точку пересечения биссектрисы угла A треугольника ABC и отрезка, соединяющего основания двух других биссектрис, проведена прямая, параллельная стороне BC. Докажите, что меньшее основание образовавшейся трапеции равно полусумме её боковых сторон.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 517]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .