ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть $H$ – ортоцентр остроугольного треугольника $ABC$; $E$, $F$ – такие точки на сторонах $AB$, $AC$ соответственно, что $AEHF$ – параллелограмм; $X$, $Y$ – точки пересечения прямой $EF$ с описанной окружностью $\omega$ треугольника $ABC$; $Z$ – точка $\omega$, диаметрально противоположная $A$. Докажите, что $H$ – ортоцентр треугольника $XYZ$. |
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 517]
Через центр O окружности, описанной около неравнобедренного треугольника ABC, проведены прямые, перпендикулярные сторонам AB и AC. Эти прямые пересекают высоту AD треугольника ABC в точках P и Q. Точка M – середина стороны BC, а S – центр описанной окружности треугольника OPQ. Докажите, что ∠BAS = ∠CAM.
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
В окружность вписан выпуклый шестиугольник ABCDEF.
Через точку пересечения биссектрисы угла A треугольника ABC и отрезка, соединяющего основания двух других биссектрис, проведена прямая, параллельная стороне BC. Докажите, что меньшее основание образовавшейся трапеции равно полусумме её боковых сторон.
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 517]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке