ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Подборка статей в журнале "Квант" Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Петя загадал положительную несократимую дробь $x = {m}{n}$. За один ход Вася называет положительную несократимую дробь $y$, не превосходящую 1, и Петя в ответ сообщает Васе числитель несократимой дроби, равной сумме $x+y$. Как Васе за два хода гарантированно узнать $x$? Решение |
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 737]
Компьютер может производить одну операцию: брать среднее арифметическое двух целых чисел. Даны три числа: m, n и 0, причём m и n не имеют общих делителей и m < n. Докажите, что с помощью компьютера из них можно получить
Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)
Страница: << 133 134 135 136 137 138 139 >> [Всего задач: 737] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|