ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC и точка O. M1, M2, M3 — центры тяжести треугольников OAB, OBC, OCA соответственно. Доказать, что площадь треугольника M1M2M3 равна 1/9 площади ABC. |
Страница: << 1 2 3 >> [Всего задач: 14]
В выпуклом 12-угольнике все углы равны. Известно, что длины каких-то десяти его сторон равны 1, а длина ещё одной равна 2. Чему может быть равна площадь этого 12- угольника?
Дан треугольник ABC и точка O. M1, M2, M3 — центры тяжести треугольников OAB, OBC, OCA соответственно. Доказать, что площадь треугольника M1M2M3 равна 1/9 площади ABC.
Дан ромб ABCD с тупым углом при вершине A. На продолжении стороны
AD за точку D взята точка K. Отрезки BK и CD пересекаются в точке L.
Даны треугольник ABC и ромб BDEF, все вершины которого лежат на
сторонах треугольника ABC, а угол при вершине E – тупой.
На продолжении стороны BC ромба ABCD за точку B взята точка M так, что угол MDC – тупой. Отрезки AB и DM пересекаются в точке N.
Страница: << 1 2 3 >> [Всего задач: 14]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке