ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет постоянную длину.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]      



Задача 78560

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Биссектриса делит дугу пополам ]
[ Вспомогательная окружность ]
Сложность: 3+
Классы: 8,9

Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет постоянную длину.
Прислать комментарий     Решение


Задача 98615

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. В нём R – радиус описанной окружности, r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что  R/r > a/h.

Прислать комментарий     Решение

Задача 54490

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

Вершины треугольника соединены с центром вписанной окружности. Проведёнными отрезками площадь треугольника разделилась на три части, равные 28, 60 и 80. Найдите стороны треугольника.

Прислать комментарий     Решение


Задача 55323

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольник ABC вписана окружность, которая касается сторон AB, BC, AC соответственно в точках M, D, N. Найдите MD, если известно, что NA = 2, NC = 3, $ \angle$BCA = 60o.

Прислать комментарий     Решение


Задача 55324

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

В треугольник KLM вписана окружность, которая касается стороны KM в точке A. Найдите AL, если известно, что AK = 10, AM = 4, а угол KLM равен 60o.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .