ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Точки А, В и С лежат на прямой m, а точки D и Е на ней не лежат. Известно, что AD = AE и BD = BE. Докажите, что CD = CE.

Вниз   Решение


В ряд выписаны несколько натуральных чисел с суммой 20. Никакое число и никакая сумма нескольких подряд записанных чисел не равна 3. Могло ли быть выписано больше 10 чисел?

ВверхВниз   Решение


Вершины треугольника помечены цифрами 0, 1 и 2. Этот треугольник разбит на несколько треугольников таким образом, что никакая вершина одного треугольника не лежит на стороне другого. Вершинам исходного треугольника оставлены старые пометки, а дополнительные вершины получают номера 0, 1, 2, причём каждая вершина на стороне исходного треугольника должна быть помечена одной из пометок вершин этой стороны (см. рис.). Докажите, что существует треугольник разбиения, помеченный цифрами 0, 1, 2.

ВверхВниз   Решение


В пространство введены 4 попарно скрещивающиеся прямые, l1, l2, l3, l4, причём никакие три из них не параллельны одной плоскости. Провести плоскость P так, чтобы точки A1, A2, A3, A4 пересечения этих прямых с P образовывали параллелограмм. Сколько прямых заметают центры таких параллелограммов?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 10]      



Задача 76499

Тема:   [ Скрещивающиеся прямые и ГМТ ]
Сложность: 4+
Классы: 10,11

В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.
Прислать комментарий     Решение


Задача 78668

Темы:   [ Скрещивающиеся прямые и ГМТ ]
[ Признаки и свойства параллелограмма ]
[ Cерединный перпендикуляр и ГМТ ]
Сложность: 5
Классы: 10,11

В пространство введены 4 попарно скрещивающиеся прямые, l1, l2, l3, l4, причём никакие три из них не параллельны одной плоскости. Провести плоскость P так, чтобы точки A1, A2, A3, A4 пересечения этих прямых с P образовывали параллелограмм. Сколько прямых заметают центры таких параллелограммов?
Прислать комментарий     Решение


Задача 76544

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Скрещивающиеся прямые и ГМТ ]
[ Цилиндр ]
Сложность: 3+
Классы: 10,11

Найти все прямые в пространстве, проходящие через данную точку M на данном расстоянии d от данной прямой AB.
Прислать комментарий     Решение


Задача 109355

Темы:   [ Куб ]
[ Скрещивающиеся прямые и ГМТ ]
[ Расстояние между скрещивающимися прямыми ]
Сложность: 4
Классы: 10,11

Прямая l , параллельная диагонали AC1 единичного куба ABCDA1B1C1D1 , равноудалена от прямых BD , A1D1 и CB1 . Найдите расстояния от прямой l до этих прямых.
Прислать комментарий     Решение


Задача 111201

Темы:   [ Ортогональное проектирование ]
[ Скрещивающиеся прямые и ГМТ ]
[ Конус ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Даны правильная четырёхугольная пирамида SABCD и конус, центр основания которого лежит на прямой SO ( SO – высота пирамиды). Точка E – середина ребра SD , точка F лежит на ребре AD , причём AF=FD . Треугольник, являющийся одним из осевых сечений конуса, расположен так, что две его вершины лежат на прямой CD , а третья – на прямой EF . Найдите объём конуса, если AB=4 , SO=3 .
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .