ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
A1 ≤ ... ≤ AnB1 ≥ ... ≥ Bn.  Доказать, что  max{a1 + b1, ..., an + bn} ≥ max{A1 + B1, ..., An + Bn}.

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 488]      



Задача 78087

Темы:   [ Принцип крайнего (прочее) ]
[ Рекуррентные соотношения ]
Сложность: 4
Классы: 10,11

Взяли три числа x, y, z. Вычислили абсолютные величины попарных разностей x1 = |x - y|, y1 = |y - z|, z1 = |z - x|. Тем же способом по числам x1, y1, z1 построили числа x2, y2, z2 и т.д. Оказалось, что при некотором n xn = x, yn = y, zn = z. Зная, что x = 1, найти y и z.
Прислать комментарий     Решение


Задача 78231

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 10,11

Доказать, что никакую прямоугольную шахматную доску шириной в 4 клетки нельзя обойти ходом шахматного коня, побывав на каждом поле по одному разу и последним ходом вернувшись на исходную клетку.
Прислать комментарий     Решение


Задача 78241

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Имеется 100 точек на плоскости, причём расстояние между любыми двумя из них не превосходит 1, и если A, B, C — любые три точки из данных, то треугольник ABC — тупоугольный. Доказать, что можно провести такую окружность радиуса 1/2, что все данные точки лежат внутри неё или на ней самой.
Прислать комментарий     Решение


Задача 78265

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 10,11

В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Прислать комментарий     Решение

Задача 78800

Темы:   [ Упорядочивание по возрастанию (убыванию) ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4
Классы: 11

Даны два набора чисел: a1, ..., an и b1, ..., bn. Расположим числа ak в возрастающем порядке, а числа bk – в убывающем порядке. Получатся наборы
A1 ≤ ... ≤ AnB1 ≥ ... ≥ Bn.  Доказать, что  max{a1 + b1, ..., an + bn} ≥ max{A1 + B1, ..., An + Bn}.

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 488]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .