ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья А. Розенталя "Правило крайнего" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 489]
Три треугольника – белый, зелёный и красный – имеют общую внутреннюю точку M. Докажите, что можно выбрать по одной вершине из каждого треугольника так, чтобы точка M находилась внутри или на границе треугольника, образуемого выбранными вершинами.
В вершинах куба ABCDEFGH расставлены натуральные числа так, что числа в соседних (по ребру) вершинах отличаются не более чем на единицу. Докажите, что обязательно найдутся две диаметрально противоположные вершины, числа в которых отличаются не более чем на единицу. (Пары диаметрально противоположных вершин куба: A и G, B и H, C и E, D и F.)
На плоскости задано n точек. Известно, что среди любых трёх из них имеются две, расстояние между которыми не больше 1. Доказать, что на плоскость можно наложить два круга радиуса 1, которые закроют все эти точки.
Найдите все такие тройки действительных чисел x, y, z, что 1 + x4 ≤ 2(y – z)² 1 + y4 ≤ 2(z – x)², 1 + z4 ≤ 2(x – y)².
У Деда Мороза было n сортов конфет, по k штук каждого сорта. Он распределил все конфеты как попало по k подаркам, в каждый – по n конфет, и раздал их k детям. Дети решили восстановить справедливость. Два ребёнка готовы передать друг другу по конфете, если каждый получает конфету сорта, которого у него нет. Всегда ли можно организовать серию обменов так, что у каждого окажутся конфеты всех сортов?
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 489]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке