ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 71]      



Задача 35070

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Покрытия ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9

На сторонах AB, BC, CD и DA выпуклого четырёхугольника ABCD отметили точки E, F, G, H соответственно.
Докажите, что описанные круги треугольников HAE, EBF, FCG и GDH покрывают четырёхугольник ABCD целиком.

Прислать комментарий     Решение

Задача 35094

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Наименьший или наибольший угол ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 3
Классы: 8,9,10

На окружности отмечено n точек, причём известно, что для каждых двух отмеченных точек одна из дуг, соединяющих их, имеет величину, меньшую 120°. Докажите, что все точки лежат на одной дуге величиной 120°.

Прислать комментарий     Решение

Задача 32080

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Принцип Дирихле (углы и длины) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что существует неостроугольный треугольник с вершинами в этих точках.

Прислать комментарий     Решение

Задача 79361

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружность, вписанная в угол ]
[ Принцип Дирихле (углы и длины) ]
[ Правильные многоугольники ]
[ Пятиугольники ]
Сложность: 3+
Классы: 8,9

На плоскости отмечена точка O. Можно ли так расположить на плоскости:  а) 5 кругов;   б) 4 круга, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее двух кругов?

Прислать комментарий     Решение

Задача 79365

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Окружность, вписанная в угол ]
[ Принцип Дирихле (углы и длины) ]
[ Правильные многоугольники ]
Сложность: 3+
Классы: 8,9

На плоскости отмечена точка O. Можно ли так расположить на плоскости   а) 7 кругов;  б) 6 кругов, не покрывающих точку O, чтобы каждый луч с началом в точке O пересекал не менее трёх кругов?

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .