Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 71]
|
|
Сложность: 4- Классы: 8,9,10
|
Две одинаковые шестерёнки имеют по 32 зубца. Их совместили и спилили
одновременно 6 пар зубцов. Доказать, что одну шестерёнку можно повернуть
относительно другой так, что в местах сломанных зубцов одной шестерёнки
окажутся целые зубцы второй шестерёнки.
|
|
Сложность: 4- Классы: 8,9,10
|
Дана бесконечная клетчатая бумага со стороной клетки, равной единице.
Расстоянием между двумя клетками называется длина кратчайшего пути ладьи от
одной клетки до другой (считается путь центра ладьи). В какое наименьшее число
красок нужно раскрасить доску (каждая клетка закрашивается одной краской), чтобы
две клетки, находящиеся на расстоянии 6, были всегда окрашены разными красками?
На плоскости дано 25 точек, причем среди любых
трех из них найдутся две на расстоянии меньше 1. Докажите,
что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Три велосипедиста ездят в одном направлении по круглому треку длиной 300 метров. Каждый из них движется со своей постоянной скоростью, все скорости различны. Фотограф сможет сделать удачный снимок велосипедистов, если все они окажутся на каком-либо участке трека длиной d метров. При каком наименьшем d фотограф рано или поздно заведомо сможет сделать удачный снимок?
|
|
Сложность: 4 Классы: 8,9,10
|
В квадрате со стороной длины 1 расположена ломаная без самопересечений, длина
которой не меньше 200. Доказать, что найдётся прямая, параллельная одной из
сторон квадрата, пересекающая ломаную не менее чем в 101-й точке.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 71]