ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Петя приобрёл в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может по любым действительным числам x и y вычислить  xy + x + y + 1  и не имеет других операций. Петя хочет написать "программу" для вычисления многочлена  1 + x + x² + ... + x1982.  Под "программой" он понимает такую последовательность многочленов  f1(x), ..., fn(x),  что  f1(x) = x  и для любого  i = 2, ..., n   fi(x) – константа или
fi(x) = fj(xfk(x) + fk(x) + fj(x) + 1,  где  j < ik < i,  причём  fn(x) = 1 + x + ... + x1982.
  а) Помогите Пете написать "программу".
  б) Можно ли написать "программу", если калькулятор имеет только одну операцию  xy + x + y?

   Решение

Задачи

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 737]      



Задача 78084

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9

100 чисел, среди которых есть положительные и отрицательные, выписаны в ряд. Подчеркнуто, во-первых, каждое положительное число, во-вторых, каждое число, сумма которого со следующим положительна, и, в-третьих, каждое число, сумма которого с двумя следующими положительна. Может ли сумма всех подчеркнутых чисел оказаться отрицательной? Равной нулю?
Прислать комментарий     Решение


Задача 78090

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 11

Подряд выписаны n чисел, среди которых есть положительные и отрицательные. Подчеркивается каждое положительное число, а также каждое число, сумма которого с несколькими непосредственно следующими за ним числами положительна. Докажите, что сумма всех подчеркнутых чисел положительна.
Прислать комментарий     Решение


Задача 78244

Темы:   [ Теория игр (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
[ Скалярное произведение. Соотношения ]
Сложность: 4+
Классы: 9,10,11

Играют двое; один из них загадывает набор из целых чисел ( x1, x2,..., xn) -- однозначных, как положительных, так и отрицательных. Второму разрешается спрашивать, чему равна сумма a1x1 + ... + anxn, где (a1...an) -- любой набор. Каково наименьшее число вопросов, за которое отгадывающий узнает задуманный набор?
Прислать комментарий     Решение


Задача 79253

Тема:   [ Теория игр (прочее) ]
Сложность: 4+
Классы: 8

В центре квадрата находится полицейский, а в одной из его вершин — гангстер. Полицейский может бегать по всему квадрату, а гангстер — только по его сторонам. Известно, что максимальная скорость полицейского вдвое меньше максимальной скорости гангстера. Доказать, что полицейский может бежать так, что в какой-то момент окажется на одной стороне с гангстером.
Прислать комментарий     Решение


Задача 79422

Темы:   [ Теория алгоритмов (прочее) ]
[ Тождественные преобразования ]
[ Индукция (прочее) ]
[ Процессы и операции ]
Сложность: 4+
Классы: 9,10,11

Петя приобрёл в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может по любым действительным числам x и y вычислить  xy + x + y + 1  и не имеет других операций. Петя хочет написать "программу" для вычисления многочлена  1 + x + x² + ... + x1982.  Под "программой" он понимает такую последовательность многочленов  f1(x), ..., fn(x),  что  f1(x) = x  и для любого  i = 2, ..., n   fi(x) – константа или
fi(x) = fj(xfk(x) + fk(x) + fj(x) + 1,  где  j < ik < i,  причём  fn(x) = 1 + x + ... + x1982.
  а) Помогите Пете написать "программу".
  б) Можно ли написать "программу", если калькулятор имеет только одну операцию  xy + x + y?

Прислать комментарий     Решение

Страница: << 93 94 95 96 97 98 99 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .