ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
arctg
Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной. Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если AB = BC = 2, ∠B = 2 arcsin Докажите, что число 10...050...01 (в каждой из двух групп по 100 нулей) не является кубом целого числа. На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом? |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 147]
На первой горизонтали шахматной доски стоят 8 чёрных ферзей, а на последней – 8 белых ферзей. За какое минимальное число ходов белые ферзи могут обменяться местами с чёрными? Ходят белые и чёрные по очереди, по одному ферзю за ход.
У пирата есть пять мешочков с монетами, по 30 монет в каждом. Он знает, что в одном лежат золотые монеты, в другом – серебряные, в третьем – бронзовые, а в каждом из двух оставшихся поровну золотых, серебряных и бронзовых. Можно одновременно достать любое число монет из любых мешочков и посмотреть, что это за монеты (вынимаются монеты один раз). Какое наименьшее число монет нужно достать, чтобы наверняка узнать содержимое хотя бы одного мешочка?
Замените в равенстве ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.
В какое наименьшее количество цветов можно покрасить натуральные числа так, чтобы любые два числа, отличающиеся на 2 или в два раза, были покрашены в разные цвета?
В центре каждой клетки клетчатого прямоугольника $M$ расположена точечная лампочка, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек, и зажечь все лампочки по какую-то одну сторону от этой прямой, если все они погашены. Каждым ходом должна зажигаться хотя бы одна лампочка. Требуется зажечь все лампочки, сделав как можно больше ходов. Какое максимальное число ходов удастся сделать, если а) $M$ – квадрат $21\times21$; б) $M$ – прямоугольник $20\times21$?
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 147]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке