|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан выпуклый пятиугольник $ABCDE$, в котором AE || CD и $AB = BC$. Биссектрисы его углов $A$ и $C$ пересекаются в точке $K$. Докажите, что BK || AE. Найдите наименьшее натуральное n, при котором число А = n³ + 12n² + 15n + 180 делится на 23. Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 80]
Любознательный турист хочет прогуляться по улицам Старого города от вокзала (точка A на плане) до своего отеля (точка B). Турист хочет, чтобы его маршрут был как можно длиннее, но дважды оказываться на одном и том же перекрестке ему неинтересно, и он так не делает. Нарисуйте на плане самый длинный возможный маршрут и докажите, что более длинного нет.
Можно ли n раз рассадить 2n + 1 человек за круглым столом, чтобы никакие двое не сидели рядом более одного раза, если
Можно ли четыре раза рассадить девять человек за круглым столом так, чтобы никакие двое не сидели рядом более одного раза?
Можно ли n раз рассадить 2n + 1 человека за круглым столом так, чтобы никакие двое не сидели рядом более одного раза, если а) n = 5; б) n = 10?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 80] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|