|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Сравните без помощи калькулятора числа: Постройте треугольник ABC, зная три точки A1, B1 и C1, симметричные центру O описанной окружности этого треугольника относительно прямых BC, CA и AB. Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник. На плоскости даны два таких конечных набора P1 и P2 выпуклых многоугольников, что любые два многоугольника из разных наборов имеют общую точку и в каждом из двух наборов P1 и P2 есть пара непересекающихся многоугольников. Докажите, что существует прямая, пересекающая все многоугольники обоих наборов. Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53]
Может ли вершина параболы у = 4х² – 4(а + 1)х + а лежать во второй координатной четверти при каком-нибудь значении а?
Пусть f(x) = x² + px + q. При каких p и q выполняются равенства f(p) = f(q) = 0?
При каких p и q уравнению x² + px + q = 0 удовлетворяют два различных числа 2p и p + q?
Про квадратный трехчлен f(x) = ax² – ax + 1 известно, что | f(x)| ≤ 1 при 0 ≤ x ≤ 1. Найдите наибольшее возможное значение а.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 53] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|