ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через диагональ B1D1 грани A1B1C1D1 и середину ребра DC правильной четырёхугольной призмы ABCDA1B1C1D1 проведена плоскость. Найдите площадь сечения призмы этой плоскостью, если AB = a , CC1 = 2a .

   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 302]      



Задача 32006

Темы:   [ Подсчет двумя способами ]
[ Степень вершины ]
[ Куб ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

а) Можно ли занумеровать рёбра куба натуральными числами от 1 до 12 так, чтобы для каждой вершины куба сумма номеров рёбер, которые в ней сходятся, была одинаковой?

б) Аналогичный вопрос, если расставлять по рёбрам куба числа –6, –5, –4, –3, –2, –1, 1, 2, 3, 4, 5, 6.

Прислать комментарий     Решение

Задача 87014

Темы:   [ Свойства сечений ]
[ Скалярное произведение ]
[ Частные случаи параллелепипедов (прочее) ]
Сложность: 3
Классы: 8,9

Через диагональ B1D1 грани A1B1C1D1 и середину ребра DC правильной четырёхугольной призмы ABCDA1B1C1D1 проведена плоскость. Найдите площадь сечения призмы этой плоскостью, если AB = a , CC1 = 2a .
Прислать комментарий     Решение


Задача 97981

Темы:   [ Подсчет двумя способами ]
[ Четность и нечетность ]
[ Куб ]
[ Инварианты ]
Сложность: 3
Классы: 7,8,9,10

В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба поставлено число, равное произведению чисел в вершинах этой грани.
Может ли сумма получившихся 14 чисел оказаться равной 0?

Прислать комментарий     Решение

Задача 98345

Темы:   [ Уравнения в целых числах ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Куб ]
[ Разложение на множители ]
[ Объем тела равен сумме объемов его частей ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 7,8,9,10

Куб разрезали на 99 кубиков, из которых ровно у одного ребро имеет длину, отличную от 1 (у каждого из остальных ребро равно 1).
Найдите объём исходного куба.

Прислать комментарий     Решение

Задача 109343

Темы:   [ Ортогональная проекция (прочее) ]
[ Цилиндр ]
[ Куб ]
Сложность: 3
Классы: 10,11

Две противоположные вершины единичного куба совпадают с центрами оснований цилиндра, а остальные вершины расположены на боковой поверхности цилиндра. Найдите высоту и радиус основания цилиндра.
Прислать комментарий     Решение


Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .