ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 302]      



Задача 109640

Темы:   [ Раскраски ]
[ Куб ]
[ Ломаные и пространственные многоугольники ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 9,10,11

Куб n×n×n сложен из единичных кубиков. Дана замкнутая несамопересекающаяся ломаная, каждое звено которой соединяет центры двух соседних (имеющих общую грань) кубиков. Назовём отмёченными грани кубиков, пересекаемые данной ломаной. Докажите, что рёбра кубиков можно окрасить в два цвета так, чтобы каждая отмеченная грань имела нечётное число, а всякая неотмеченная грань – чётное число сторон каждого цвета.

Прислать комментарий     Решение

Задача 97878

Темы:   [ Разрезания на параллелограммы ]
[ Прямоугольные параллелепипеды ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 5
Классы: 9,10,11

  а) Квадрат разбит на прямоугольники. Цепочкой называется такое подмножество K множества этих прямоугольников, что существует сторона S квадрата, целиком закрытая проекциями прямоугольников из K, но при этом ни в какую точку S не проектируются внутренние точки двух прямоугольников из K (мы относим к прямоугольнику и его стороны). Доказать, что любые два прямоугольника разбиения входят в некоторую цепочку.

  б) Аналогичная задача для куба, разбитого на прямоугольные параллелепипеды (в определении цепочки нужно заменить сторону на ребро).

Прислать комментарий     Решение

Задача 108997

Темы:   [ Максимальное/минимальное расстояние ]
[ Куб ]
[ Теорема Пифагора в пространстве ]
Сложность: 5
Классы: 10,11

На диагонали AC нижней грани единичного куба ABCDA1B1C1D1 отложен отрезок AE длины l . На диагонали B1D1 его верхней грани отложен отрезок B1F длиной ml . При каком l (и фиксированном m>0 ) длина отрезка EF будет наименьшей?
Прислать комментарий     Решение


Задача 109820

Темы:   [ Ортогональная проекция (прочее) ]
[ Прямоугольные параллелепипеды ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 5
Классы: 10,11

Можно ли расположить в пространстве 12 прямоугольных параллелепипедов P1 , P2 , P12 , ребра которых параллельны координатным осям Ox , Oy , Oz так, чтобы P2 пересекался (т.е. имел хотя бы одну общую точку) с каждым из оставшихся, кроме P1 и P3 , P3 пересекался с каждым из оставшихся, кроме P2 и P4 , и т.д., P12 пересекался с каждым из оставшихся, кроме P11 и P1 , P1 пересекался с каждым из оставшихся, кроме P12 и P2 ? (Поверхность параллелепипеда принадлежит ему.)
Прислать комментарий     Решение


Задача 109801

Темы:   [ Свойства сечений ]
[ Прямоугольные параллелепипеды ]
[ Ортогональная проекция (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 6
Классы: 10,11

В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником. Известно, что этот шестиугольник можно поместить в некоторый прямоугольник Π . Докажите, что в прямоугольник Π можно поместить одну из граней параллелепипеда.
Прислать комментарий     Решение


Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 302]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .