ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что плоскость, проходящая через середины двух противоположных рёбер любой треугольной пирамиды, делит её объём пополам.

   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 111202

Темы:   [ Ортогональное проектирование ]
[ Скрещивающиеся прямые и ГМТ ]
[ Цилиндр ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Даны правильная четырёхугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO ( SO – высота пирамиды). Точка F – середина ребра SD , точка E принадлежит апофеме ST грани BSC , причём TE=3ES . Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой AB , а одна из двух других вершин лежит на прямой EF . Найдите объём цилиндра, если SO=3 , AB=1 .
Прислать комментарий     Решение


Задача 111203

Темы:   [ Ортогональное проектирование ]
[ Скрещивающиеся прямые и ГМТ ]
[ Цилиндр ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Даны правильная четырёхугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO ( SO – высота пирамиды). Точка E – середина апофемы грани BSC , точка F принадлежит ребру SD , причём SF=2FD . Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой AB , а одна из двух других вершин лежит на прямой EF . Найдите объём цилиндра, если SO=12 , AB=4 .
Прислать комментарий     Решение


Задача 111204

Темы:   [ Ортогональное проектирование ]
[ Скрещивающиеся прямые и ГМТ ]
[ Конус ]
[ Правильная пирамида ]
Сложность: 4
Классы: 10,11

Даны правильная четырёхугольная пирамида SABCD и конус, центр основания которого лежит на прямой SO ( SO – высота пирамиды). Точка E лежит на ребре SD , причём SE=2ED , точка F – середина ребра AD . Треугольник, являющийся одним из осевых сечений конуса, расположен так, что две его вершины лежат на прямой CD , а третья – на прямой EF . Найдите объём конуса, если AB=1 , SO= .
Прислать комментарий     Решение


Задача 87028

Темы:   [ Свойства сечений ]
[ Отношение объемов ]
[ Скрещивающиеся прямые и ГМТ ]
[ Проектирование помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
[ Объем тетраэдра и пирамиды ]
Сложность: 4
Классы: 10,11

Докажите, что плоскость, проходящая через середины двух противоположных рёбер любой треугольной пирамиды, делит её объём пополам.
Прислать комментарий     Решение


Задача 78217

Темы:   [ ГМТ в пространстве (прочее) ]
[ Выпуклые многоугольники ]
[ Скрещивающиеся прямые и ГМТ ]
Сложность: 5
Классы: 10,11

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .