ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Составьте уравнение плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .

   Решение

Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 217]      



Задача 105194

Темы:   [ Раскраски ]
[ Метод координат на плоскости ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3-
Классы: 7,8,9

Прямая раскрашена в два цвета. Докажите, что найдётся отрезок, оба конца и середина которого покрашены в один и тот же цвет.
Прислать комментарий     Решение


Задача 65575

Темы:   [ Целочисленные и целозначные многочлены ]
[ Метод координат на плоскости ]
[ Делимость чисел. Общие свойства ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3
Классы: 8,9,10

На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами.
Докажите, что если расстояние между ними – целое число, то соединяющий их отрезок параллелен оси абсцисс.

Прислать комментарий     Решение

Задача 87167

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) .
Прислать комментарий     Решение


Задача 87168

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Составьте уравнение плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .
Прислать комментарий     Решение


Задача 87171

Темы:   [ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 8,9

Найдите расстояние от точки D(1;3;2) до плоскости, проходящей через точки A(-3;0;1), B(2;1;-1) и C(-2;2;0) .
Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .