ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны точки A(2;-1;0) и D(-3;0;4) . Составьте параметрические уравнения прямой AD .

   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 94]      



Задача 87205

Темы:   [ Метод координат в пространстве ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 8,9

Даны точки A(2;-1;0) , B(3;2;1) , C(1;2;2) и D(-3;0;4) . Найдите расстояние от точки D до плоскости ABC .
Прислать комментарий     Решение


Задача 87206

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки A(2;-1;0) , B(3;2;1) , C(1;2;2) и D(-3;0;4) . Найдите острый угол между плоскостями ABC и BCD .
Прислать комментарий     Решение


Задача 87207

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки A(2;-1;0) , B(3;2;1) , C(1;2;2) и D(-3;0;4) . Составьте уравнение плоскости, проходящей через точку D параллельно плоскости ABC .
Прислать комментарий     Решение


Задача 87208

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 8,9

Даны точки A(2;-1;0) и D(-3;0;4) . Составьте параметрические уравнения прямой AD .
Прислать комментарий     Решение


Задача 87353

Темы:   [ Куб ]
[ Расстояние от точки до плоскости ]
Сложность: 3
Классы: 10,11

В кубе ABCDA1B1C1D1 , где AA1 , BB1 , CC1 и DD1 – параллельные рёбра, плоскость P проходит через диагональ A1C1 грани куба и середину ребра DD1 . Найдите расстояние от середины ребра CD до плоскости P , если ребро куба равно 4.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .