ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 94]      



Задача 87189

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) . Составьте уравнение плоскости MNK .
Прислать комментарий     Решение


Задача 87190

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 8,9

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L (3;2;1). Составьте уравнение плоскости, проходящей через точку L параллельно плоскости MNK .
Прислать комментарий     Решение


Задача 87192

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите острый угол между плоскостями MNK и NKL .
Прислать комментарий     Решение


Задача 87193

Темы:   [ Метод координат в пространстве ]
[ Параметрические уравнения прямой ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Даны точки M(2;-5;0) , N(3;0;4) , K(-2;2;0) и L(3;2;1) . Найдите угол между прямой MN и плоскостью NKL .
Прислать комментарий     Решение


Задача 87196

Темы:   [ Метод координат в пространстве ]
[ Уравнение плоскости ]
Сложность: 3
Классы: 10,11

Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) . Составьте уравнение плоскости ABC .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 94]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .